

Outline

- History
- Definition
- Disease states
- Causes
- Immunopathology
- Diagnosis
- Treatment
- Mouse Models of human disease

Autoimmunity Origins

Horror autotoxicus:

Literally, the horror of self-toxicity.

A term coined by the German immunologist Paul Ehrlich (1854-1915) to describe the body's innate aversion to immunological selfdestruction.

History Continued

This concept of autoimmunity as the cause of human illness is relatively new, and it was not accepted into the mainstream of medical thinking until the 1950s and 1960s.

Autoimmunity

Basically means immunity to self

A condition that occurs when the immune system mistakenly attacks and destroys healthy body tissue.

The "Immunology Definition"

Failure of immune tolerance

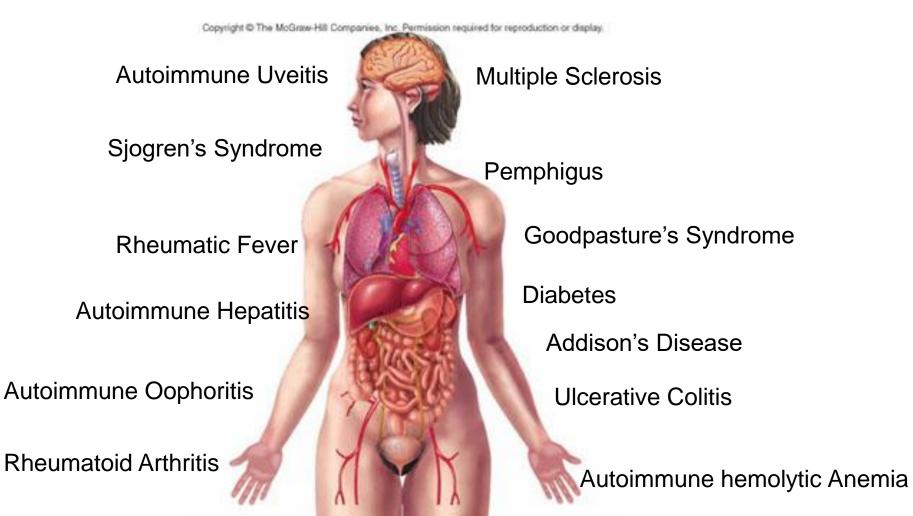
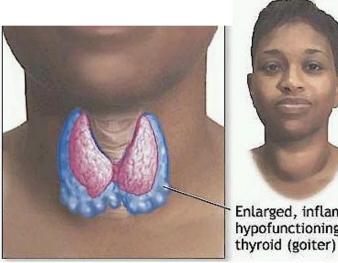

Layers of self-tolerance			
Type of tolerance	Mechanism	Site of action	
Central tolerance	Deletion Editing	Thymus Bone marrow	
Antigen segregation	Physical barrier to self-antigen access to lymphoid system	Peripheral organs (eg, thyroid, pancreas)	
Peripheral anergy	Cellular inactivation by weak signaling without co-stimulus	Secondary lymphoid tissue	
Regulatory cells	Suppression by cytokines, intercellular signals	Secondary lymphoid tissue and sites of inflammation	
Cytokine deviation	Differentiation to T _H 2 cells, limiting inflammatory cytokine secretion	Secondary lymphoid tissue and sites of inflammation	
Clonal exhaustion	Apoptosis post-activation	Secondary lymphoid tissue and sites of inflammation	

Figure 13-16 Immunobiology, 6/e. (© Garland Science 2005)

20

Pick an organ, any organ . . .

Autoimmunity can affect ANY organ/organ system in the human body

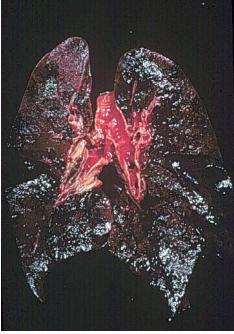

Autoimmunity Classification

Can be classified into clusters that are either organ-specific or systemic

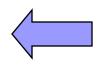
Organ-specific autoimmune diseases	Systemic autoimmune diseases
Type I diabetes mellitus	Rheumatoid arthritis
Goodpasture's syndrome	Scleroderma
Multiple sclerosis	Systemic lupus erythematosus Primary Sjögren's syndrome
Graves' disease Hashimoto's thyroiditis Autoimmune pernicious anemia Autoimmune Addison's disease Vitiligo Myasthenia gravis	Polymyositis

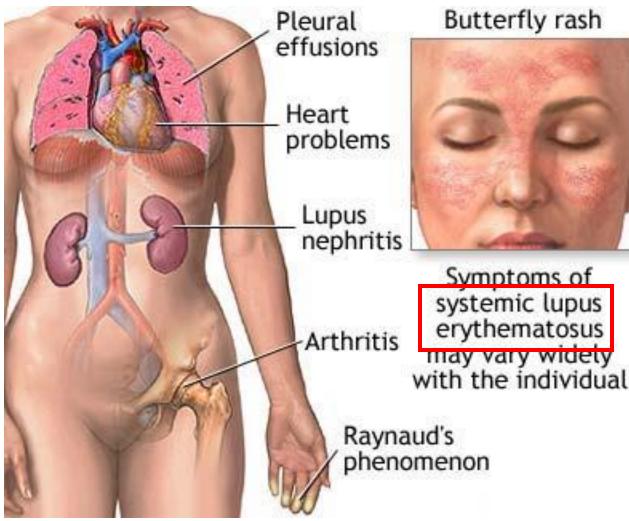
Figure 13-1 Immunobiology, 6/e. (© Garland Science 2005)

Examples of Organ Specific

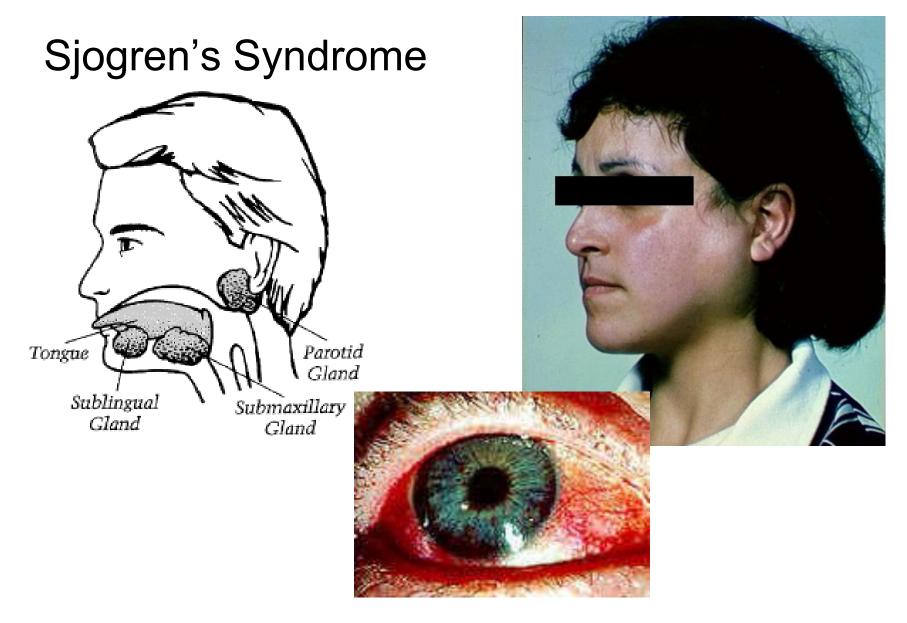

Lungs of a patient with Goodpasture's

Hashimoto's disease (thyroiditis)

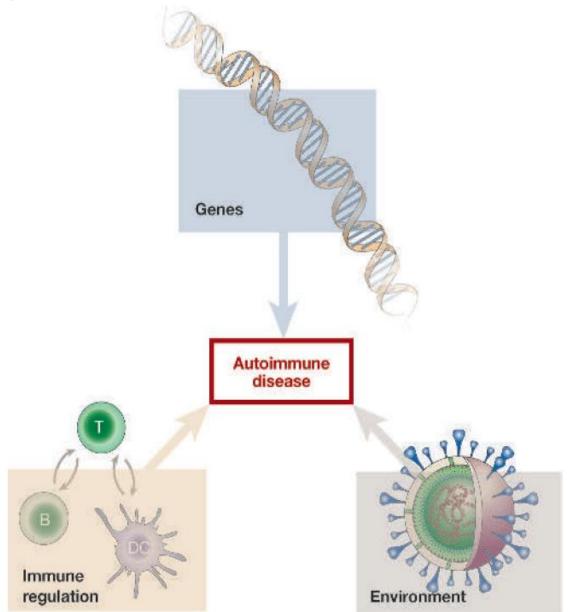



1997 Mayo Foundation for Medical Education and search. All rights reserved.

Vitiligo



Examples of Systemic Autoimmunity



SLE

Examples of Systemic Autoimmunity

Causes of Autoimmunity

Genes and Autoimmunity

- The concept that a single gene mutation leads to a single autoimmune disease is the EXCEPTION not the rule.
- Because of this autoimmune diseases are generally classified as *complex* diseases as there is not a single "pinpoint-able" gene

Exceptions to the Rule – Simple Genetic Autoimmune Illnesses

Disease	Gene	Mechanism
APS-1 (Autoimmune polyglandular syndrome type 1)	AIRE	Decreased expression of self-antigens in the thymus, resulting is a defect in negative selection
IPEX (Immunodysregulation, polyendocrinopathy, enteropathy, X-linked)	FOXP3	Decreased generation of Tregs
ALPS (autoimmune lymphoproliferative syndrome)	FAS, FASL	Failure of apoptotic death of self reactive T or B cells

Complex Disease and Genetics

There have been numerous disease associated genes or disease "susceptibility" genes linked to autoimmunity

Associations of HLA serotype with susceptibility to autoimm	ine disease
---	-------------

Disease	HLA allele	Relative risk	Sex ratio (오:♂)
Ankylosing spondylitis	B27	87.4	0.3
Acute anterior uveitis	B27	10	< 0.5
Goodpasture's syndrome	DR2	15.9	~1
Multiple sclerosis	DR2	4.8	10
Graves' disease	DR3	3.7	4–5

Figure 13-20 part 1 of 2 Immunobiology, 6/e. (© Garland Science 2005)

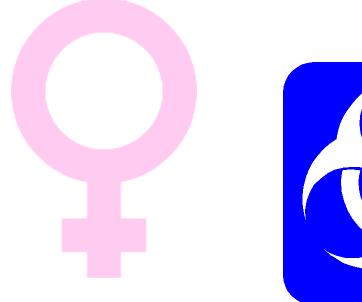
Complex Doesn't even begin to describe Autoimmune genetics

Table 1

Altered gene expression patterns reported in autoimmune diseases

Diseases	Cell receptors adhesion	Inflammatory molecules	Apoptosis/cell	Disease specific Ref.	
	molecules	growth factors	remodeling	gene expression	

SLE


MS

Active plaques

Chronic plaques

Environment

Pathogens, drugs, hormones, and toxins are just a few ways that the environment can trigger autoimmunity

Pathogens

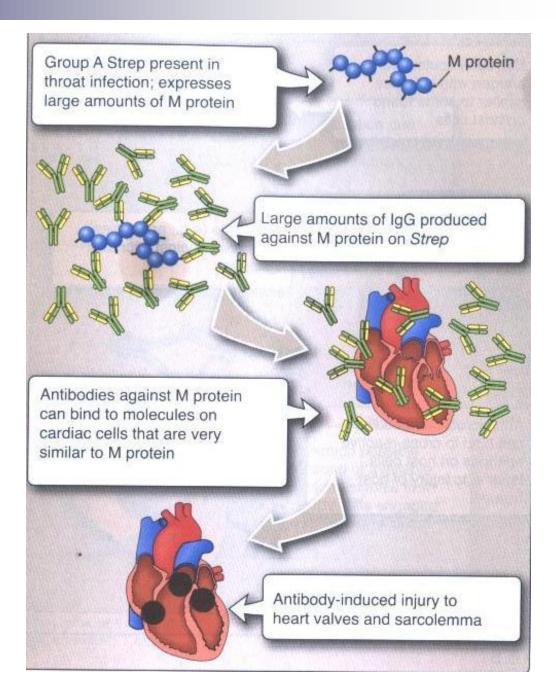

Clinical Reviews in Allergy and Immunology © Copyright 2007 by Humana Press Inc. All rights of any nature whatsoever reserved. ISSN 1080-0549/07/32(1):111-118/\$30.00 ISSN Online 1559-0267

Table 1	
Main Examples of Molecular Mimicry Between a Pathogen and Auto-Immune Disease	

Disease	Host antigens	Pathogens	References
Chagas' cardiomyopathy	Ribosomal protein 23 kD, myosin, B13 protein, Cha-peptide	Trypanosoma cruzi	3,4,8,9
Rheumatic fever	Cardiac myosin, tropomyosin laminin, vimentin, actin, keratin, N-acetyl-glucosamine	Streptoccocus pyogenes	10–12
Myasthenia gravis	Acetylcholine receptor, neurofilaments	Herpes virus, Hemophilus influenzae	3,13,14
Multiple sclerosis	Myelin basic protein	Corona, measles, mumps, EBV, herpes	4,15–17
Guillain-Barré	Gangliosides, lipo-oligosaccharide	Campylobacter jejuni	18,19
Type 1 diabetes mellitus	Islet antigens:GAD 65, proinsulin carboxypeptidase H	Coxsackievirus B, Rotaviruses, Herpes, hepatitis C, rhino-, hanta retroviral	18,19
Ankylosing spondylitis	HLA-B27, type I, II, IV collagen	Klebsiella pneumoniae, chlamydia	4,22,23
Antiphospholipid syndrome	β_2 -glycoprotein-I	Hemophilus influenza, Neisseria gonorea, Tetanus toxin, CMV	24,25
Systemic lupus erythematosus	Ro 60 kD, NMDA, dsDNA	EBV pneumococcal polysaccharide	26–29

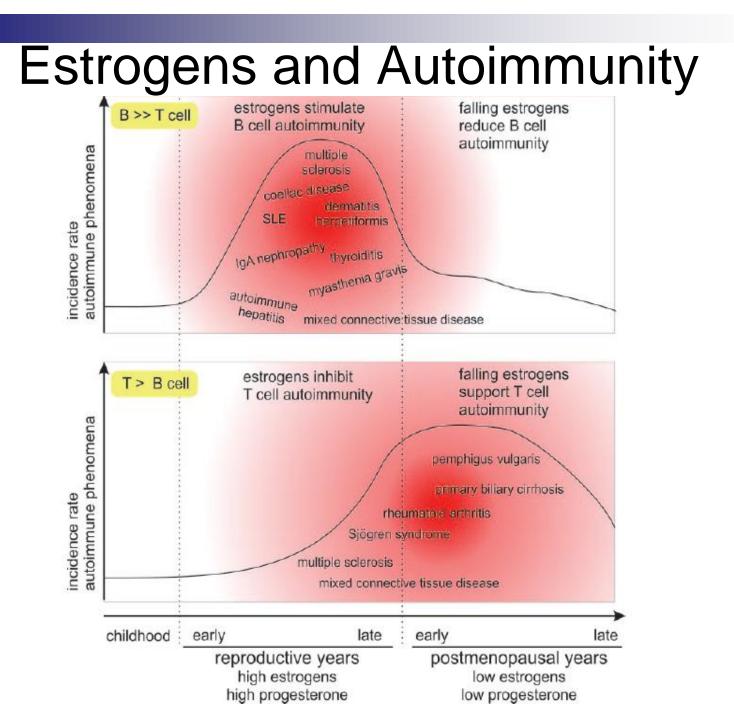
Rheumatic fever is a classic example of molecular mimicry

Drugs and Toxins

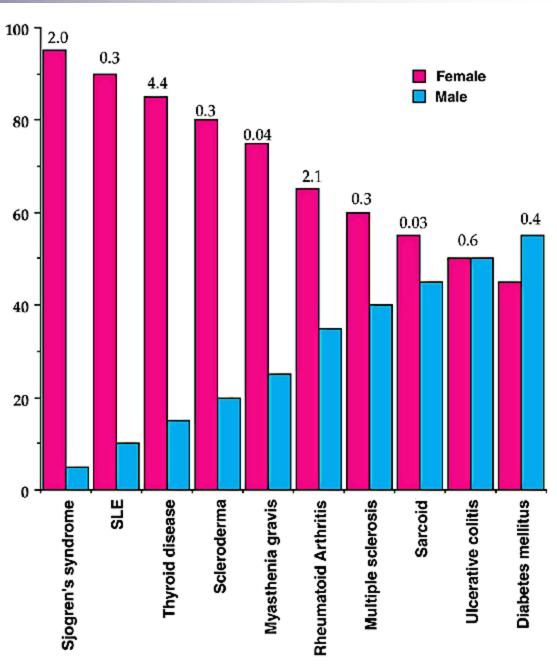
Drugs

Examples: Procainamide (Pronestyl)

□ Drug induced lupus

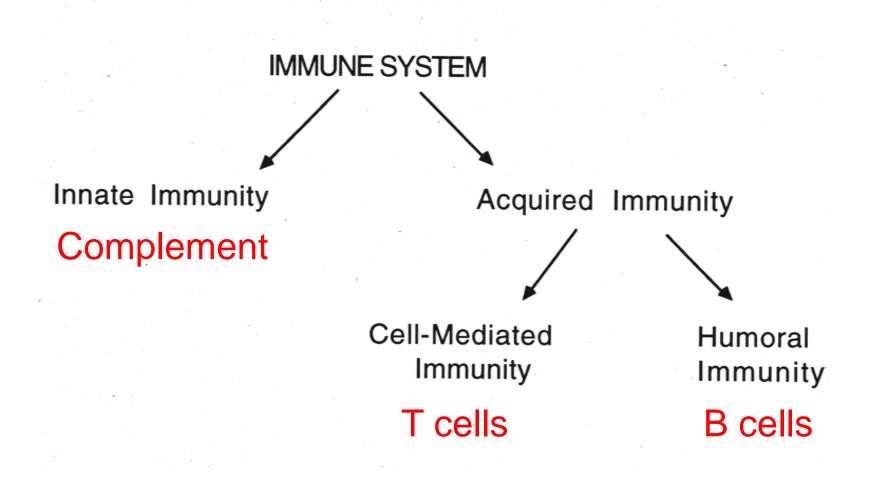

Toxins

- □ Examples: Toxic Oil Syndrome
- Occurred in Spain in 1981 after people ate contaminated olive oil.
- People developed unique illness marked by lung disease, eosinophilia, and excessive IgE


Hormones

- Females are much more likely to develop autoimmune illness
- Rise in hormones associated with pregnancy may even cause abortion of the fetus (RSA)
- Endometriosis and preeclampsia are both thought to be autoimmune in nature

Hypothesis: estrogen response elements (EREs) in several genes



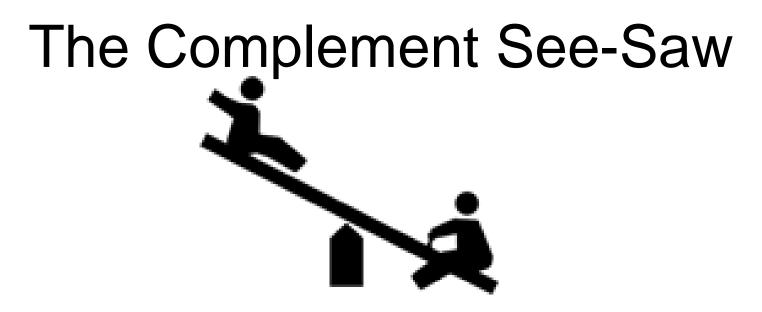
Sex differences in autoimmunity (%) xex f(r action of the set o

Immune Regulation

A defect in any arm of the immune system can trigger autoimmunity

Complement Deficiencies

CD59 or CD55 –


- Paroxysmal nocturnal hemoglobinuria
- autoimmune hemolytic anemia
- autoimmune thrombocytopenia
- Iupus lymphopenia

- Deficiencies in the classical complement pathway renders pts more likely to develop immune complex diseases

 - □ RA

- The complement system is a mediator in both the pathogenesis and prevention of immune complex diseases
- It has a protective effect when functioning in moderation against pathogens; at the same time, the inflammation promoted by complement activation can result in cellular damage when not kept in check.

B or T? That is the question?

Autoimmunity is hard to classify as strictly a B cell or T cell mediated disease as multiple arms of the immune system are involved

Myasthenia Gravis

Disease marked by progressive weakness and loss of muscle control Classified as a "B cell" Disease Autoantibodies against nicotinic acetylcholine receptors

Diabetes

Disease in which the body does not produce or properly use insulin

- "T cell" Disease
- T cells attack and destroy pancreatic beta cells

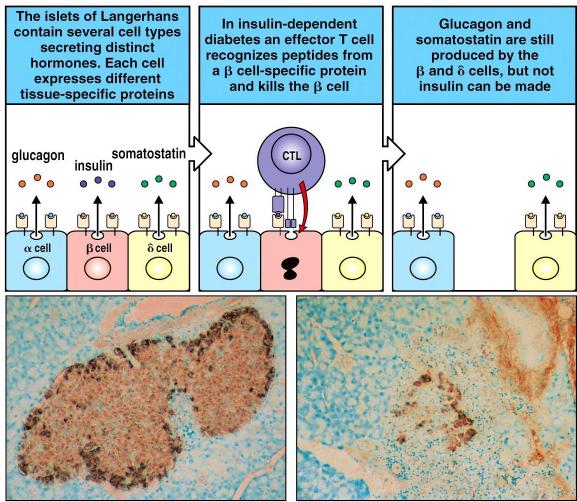


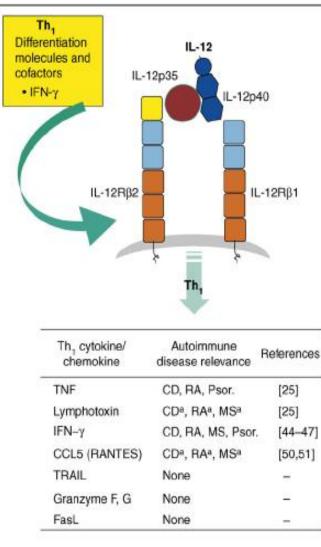
Figure 13-34 Immunobiology, 6/e. (© Garland Science 2005)

Multiple Sclerosis

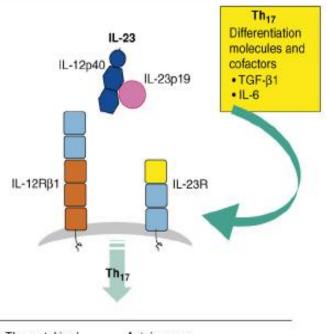
Central nervous system (brain and spinal cord)

> Axon In multiple sclerosis the myelin sheath, which is a single cell whose membrane wraps around the axon, is destroyed with inflammation and scarring

Myelin

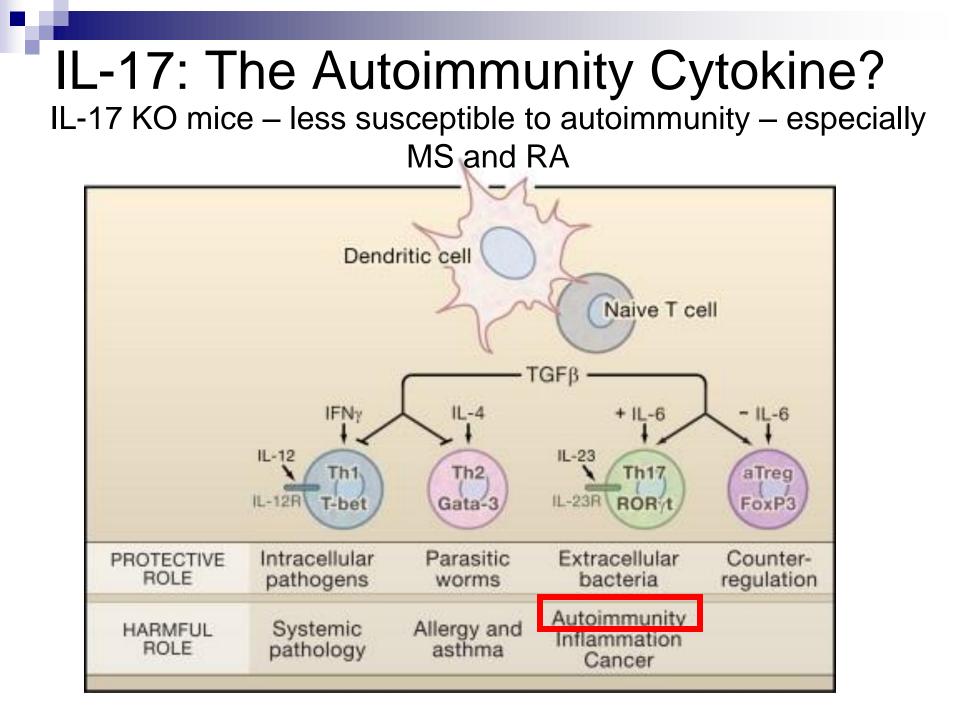

sheath

nerve


of healthy

MS patients can have autoantibodies and/or self reactive T cells which are responsible for the demyelination

Cytokine Dysregulation in Autoimmunity



CD = Crohn's Disease

Th ₁₇ cytokine/ chemokine	Autoimmune disease relevance	References
TNF	CD, RA, Psor.	[25]
IL-6	CD, RA, MSª	[26]
IL-17A	RA, MS, CD	[33,38,42]
IL-17F	None	_
GM-CSF	RA ^a , MS ^a	[20,21]
CXCL1 (KC/Gro-α)	MS ^a	[51]
CCL7 (MCP-3)	MSa	[51]
CCL20 (MIP-3α)	Psor., RA	[30,52]
CCL22 (MDC)	MS ^a	[53]

Current Opinion in Immunology

Symptoms

- Initial diagnosis may be missed in patients as diseases present with general symptoms
 - Fever, muscle ache, fatigue, joint pain
- Disease specific manifests
 SLE rash
 Sjogren's dry mouth, dry eyes

Diagnosis

General tests

- C Reactive Protein
- □ Autoantibody titers (anti DNA, anti phospholipids, etc)
- Presence of Rheumatoid Factor
- Disease specific tests
 Neurological exam MS
 Fasting glucose Diabetes

Treatment

The key to treating autoimmunity is immunomodulation

Treatment Options

- Anti-inflammatory drugs
 - NSAIDS, Corticosteroids
- Immunosuppressant drugs
 - Methotrexate
- Radiation
- Plamapheresis
- Cell Blocking Reagents
 - aCD20 (Rituxan)
 - aCD3 (Teplizumab)
- Cytokine Blocking Reagents
 - TNF (Humira, Enbrel)

Mouse Models

	Human Disease	Mouse Model
-	RA	Collagen Induced Arthritis (CIA)
	MS	Experimental Autoimmune Encephalitis (EAE)
	Ulcerative Colitis (UC)	Dextran Sodium Sulfate induced Colitis (DSS)
	Diabetes	Non Obese Diabetic (NOD)
	Lupus	MRL ^{lpr} (Lpr = lupus prone)

Autoimmunity is a failure of tolerance!

Knowing the tolerance mechanisms the immune system uses, will help you better understand autoimmune diseases!

Failure of tolerance and disease Outcome		
Type of tolerance	Mechanism	
Central tolerance	Deletion Editing	
Antigen segregation	Physical barrier to self-antigen access to lymphoid system	
Peripheral anergy	Cellular inactivation by weak signaling without co-stimulus	
Regulatory cells	Suppression by cytokines, intercellular signals	
Cytokine deviation	Differentiation to T _H 2 cells, limiting inflammatory cytokine secretion	
Clonal exhaustion	Apoptosis post-activation	

Figure 13-16 Immunobiology, 6/e. (© Garland Science 2005)